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It is shown that, with certain limitations, the equations of orientational equih'brium of a nematic liquid crystal in the two-dimensional 
domain, placed in a non-uniform magnetic field, reduce to the non-linear sine-Heimboltz equation in the plane of conjugate 
magnetic potentials It and ~. The part played by the conformal mappings I1,11 -~ x,y is investigated. Plane boundary-value problems 
for this equation in the one- and two-dimensional regions are considered. Criteria of stability of the two-dimensional solutions 
in open and closed volumes are established. The explicit forms of the sointions, which are expressed in terms of periodic elliptic 
functions and quasi-periodic theta functions of two arguments, are analysed. The inverse problem is solved. Solutions 
of the two-dimensioned kink and the Jacobi delta-function type in a closed volume are obtained. © 1996 Elsevier Science Ltd. 
All rights reserved. 

1. Nematic liquid crystals, possessing liquid mobility, exhibit an unusual orientational elasticity. In pure 
form it is found in fixed nematic liquid crystals subjected to a moment due to a magnetic or electric 
field and solid boundaries rather than to a force. These factors produce a spatially non-uniform director 
field l(x, y, z) in the crystal. The unit vector I represents the mean statistical direction (in a physically 
small volume) of the axes of elongated (oblate) molecules, between which there are long-range moment 
interactions. 

The equation of equilibrium of the local moments in a fixed nematic liquid crystal can be obtained 
from the variational principle. The Oseen-Frank elastic energy 

F = 2 !  [k,(divl) 2 +k2(irotl) 2 +k311xrotll 2 +zitHiHt]dv (1.1) 

is related to the gradients of the field l(x,y, z). This does not include the energy of the change in volume 
~. The coefficients kl and k3 are the elastic moduli of the bending of the lines of force of the orientational 
field, k2 is the torsional modulus and/-//is the magnetic field vector. The diamagnetic tensor Z/k = Z_LS/k 
4- (ZII - ~&)lilk has two components--a longitudinal component (Zll) and a transverse component (Z1) 
of the susceptibility of the nematic liquid crystal. 

We will consider the magnetic field as being quasi-periodic, obeying the following equations 

d i v B = 0 ,  ro tH=0 ,  H=gradlx, B = H  (1.2) 

Although we must take B i -- Z~Hk for the magnetic induction vector, in view of the diamagnetism 
of the nematic liquid crystal the magnetic polarizabiity of the medium is extremely small. Hence, the 
last relation in (1 ?)~ which is in fact an assumption of the theory, is satisfied in reality with high accuracy, 
of the order of 10-. 

We must make other assumptions in addition to this one. We will assume, first, that 

kn - k3 = k (1.3) 

although nematic liquid crystals exist for which this relation holds accurately. Second, we will confine 
ourselves to plane: bending problems, ignoring twisting of the lines of force, by putting lrotl = 0. We 
will introduce the angle functions cp(x, y) and W(x, y) which represent the orientation of the vectors I 
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and I-I in the (x, y) plane with respect to the OY axis (a Cartesian system of coordinates with origin at 
an arbitrary point O), given by the following expressions 

lx = sing, ly = costp, H x = Hsin¥, Hy = Hcos¥ (1.4) 

With these assumptions, the following equation of equilibrium of the moments in a nematic liquid 
crystal corresponds to functional (1.1) 

kV 2 (2ix)- H2xsin 2ct = - k V  2 2 ~ ,  tz = tp - ~, X = Z, - X± (1.5) 

The angle of orientation of the magnetic field is 

- ' ~ ' ' = ( 1 . 6 )  ~lr--al'ct,g(~Lx,Jgv), px=OP/Ox, p),=Op/~y, V2p 0 

i.e. it is found from the equations of the magnetic field, which reduce to Laplace's equation for the 
magnetic potential g. 

The angles of orientation are specified at the boundary of the two-dimensional region S as a function 
of the coordinates of the boundary 

a = a , ,  v = w ( 1 . 7 )  

The boundary-value problem (1.5)--(1.7) enables us to obtain the orientational field I(x,y) in the region 
S, which is generated under the influence of the magnetic field It(x, y) and the specified orientation at 
the boundary. Despite these assumptions, the problem turns out to be quite complex in view of the 
singularities of the non-linear equation (1.5). It has so far only been investigated in the one-dimensional 
case (see the review in [3]). 

Below, we develop a general approach to solving two-dimensional problems. 

2. We reduce (1.5) to a form which does not contain inhomogeneous terms. By a conformal 
transformation of the x, y coordinates to orthogonal curvilinear coordinates g(x, y), ~(x, y), which are 
real and imaginary conjugate magnetic potentials, the two-dimensional Laplace operator V 2 can be 
converted as follows: 

2 2 2 ~2 ~L 2 V2 ~)2 V 2 ~ H Via, Via - [ -I- ~)2 [ ~112, --- / 3x 2 -.I.- ~)2 / ~y2 (2.1) 

The use of this formula in (1.5) dearly enables one to dispense with the variable factor H 2 in the 
equation. Further, since the potentials p and rl are conjugate harmonic functions satisfying Laplace's 
equation and the Cauchy-Riemann relations 

P • V2g = V2rl = 0, g~ = fly, fix = -gy (2.2) 

it can be proved [4], that the angle ¥ of orientation of the vector of the quasi-potential magnetic field 
is also a harmonic function satisfying Laplace's equation 

v2v = 0 (2.3) 

This enables us to equate the right-hand side in (1.5) to zero. 
In view of the importance of relation (2.3), which is unknown in field theory, we will spend some 

time on proving it. Differentiating the formula for the magnetic field in (1.4) and using the magnetic- 
field equations (1.2), we obtain 

~ = - l ( l n H 2 ) ; , ,  ~ .= l ( l nH 2)~ .  (2.4) 

(the primes denote partial derivatives with respect to the variables indicated). Further, differentiating 
the first relation with respect to y and the second relation with respect to x and adding the equations 
obtained, we arrive at (2.3). This result was previously obtained in [5] in a more complex way. 

Thus, using (2.1) and (2.3) we can write the orientational equation (1.5) in the following final form 
[5] 
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~tzV " 2  2 (2o0 - sin 2or = O, Bx = ~ (2.5) 

( ~  is the characteristic magnetic potential). Another  form of writing (2.5), expressed in terms of the 
additional angle fl, is 

~t~V~ (213) + sin 2[~ = O, 213 = 7t - 2(x (2 .6 )  

The new angular function I](x, y) is more convenient in certain boundary-value problems, since it 
varies in the same way as the orientational deformations VI. It is important that, as a result of conformal 
transformations, the angles ~ and 13 are preserved, while (1.5) is converted to a simpler non-linear 
equation (homogeneous with constant coefficients). It enables us to obtain initially the angular function 
a(~t, rl) or I~(Ix, 11) in the space of the variables ~t and 11. Then, after solving the corresponding magnetic 
problem we must transform ~x and 15 into the real space x, y, knowing the magnetic potentials ~t(x, y) 
and rl(x, y). The initial angle functions 9 and W, which define the orientation of the vectors I and H, 
are then found from the formulae 

q~(x, y) = ~x[I.t(x, y), rl(x, y)] + ¥(x, y) (2.7) 

¥ (x ,y )  = arctg(~t~, / ~t;,), IX = ~t(x,y), 11 = ~ ( x , y )  (2.8) 

The general solutions (2.7) and (2.8) specify a relatively simple local relationship between the fields 
l(x,y) and I- l(x ,y) .  T h e  functions a ( ~  11) and [3(Ix, rl) are universal for a whole class of magnetic problems, 
the solutions of which IX(x,y), rl(x, y) conformally transform the actual boundaries of the region (in the 
(x, y) plane) into the same boundary in the (IX, rl) plane. The specific generating function o~(Ix, 11) or 
15(~t, 11) is constructed once for this boundary. 

The subsequent: material of this paper is devoted to the construction of these functions. 
We note one important consequence of (2.7) and (2.8). In addition to the direct problem of finding 

the orientational fields l(x, y )  from the external magnetic field It(x,y) and the boundary conditions, we 
can also solve the inverse problem, namely, to find the magnetic field from the orientational field that 
exists in equilibrium with it. 

Differentiating ,~[ix(x,y), rl(x; y)] as a complex function and using relations (1.2) and (2.2), we obtain 
initially 

H x og; I o g  n - cx~. I o~, o~'~ I " + o~y I " 
= , ; , ,  H v = cx~t ' cxn (2.9) 

% / a ~ + % / a .  - % 1 % + a ~ / %  

The derivatives ~x~ and ~ can in many cases be expressed as first integrals in terms of quadratic 
functions of the angle ~x. In (2.9) we can change from the angles ~x and their gradients to the 
absolute angles ~p and ¥, if we use (2.7), (2.8) and (2.4). Naturally, the inverse formulae also have a 
local character. They constitute the theoretical basis for a method of monitoring the magnetic fields 
using the orientational field of the nematic liquid crystal, which in turn can be monitored by polarization- 
optical methods [3, 6]. 

3. The boundary-value problems for the non-linear equation (2.5) or (2.6) have apparently not been 
previously considered. Only recently have fairly general solutions of it begun to appear in the literature. 
We will consider them as they apply to two-dimensional (plane) problems of the theory of elasticity of 
nematic liquid crystals. We will confine ourselves here to the condition of uniform orientation of the 
nematic liquid crystal along all the boundaries or its individual parts. This is most often of all realized 
in practice. With this assumption we will consider two classes of problems. 

The first of these is related to the regions whose boundaries are either equipotentials (~t = const) of 
the magnetic field~, or coincide with the lines of force (rl = const). Then, Eq. (2.5) or (2.6) must be 
solved in the plane of the variables (IX, rl) for the strip IXl ~ IX ~ 13,2 or ~1 ~ ~ ~ 112 with the boundary 
conditions 

I~(~tl) = 131, 13(IX2) = 132 or I~(r h) =/31, 13(rl2) = 132 (3.1) 

where [31 and 132 are constants which define the orientation of the unit vector I at the boundary with 
respect to the normal or with respect to the boundary itself. In a similar way we can also investigate 
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the conditions for the supplementary angle a. The one-dimensional solution of the form 15(Ix) or ~(rl) 
obviously satisfies boundary conditions (3.1). This solution turns out to be two-dimensional in the actual 
space (x, y) if the magnetic problem is two-dimensional: IX = Ix(x, y) or rl = ~(x, y). 

Another class of more complex but also solvable problems arises with regions some parts of the 
boundaries of which coincide with equipotentials, while the others coincide with the lines of force of 
the magnetic field. In this case the two-dimensional equation (2.5) or (2.6) must be solved for a closed 
region that is rectangular in the (Ix, rl) plane, the sides of which are parallel to the Orl or OIX coordinate 
axes. Even in the case of constant values of the angle on each of the rectilinear parts, when 

[3(Ix1) = ~1, ~(Ix2) = 62, ~('ql) = [33, 13(rh) = 134 (3.2) 

we must consider the solution which depends on both potentials Ix and 11. However, here we will use a 
distinctive method of separation of variables. 

We will consider both these classes of problems in succession. 

4. In the first class of problems the one-dimensional equation which follows from (2.5) or (2.6) is 
solved at the first stage. Bearing this in mind, we write 

IX2Z~2(2~)/~IX2 + sin2~ = 0 (4.1) 

We will first consider the case when, if there is no magnetic field, there are also no distortions of the 
orientational field, i.e. the angles on both boundaries are simply the same 131 = 152. The following 
boundary conditions are typical 

~l(l 'Ll)  = ~2(IX2) = 0 ,  IXl = 0 ,  IX2 = AIx (4.2) 

When there is no magnetic field the angle 15 is also equal to zero over the whole band. This can be 
seen from Eq. (4.1). 

When there is a magnetic field present, Eq. (4.1) has a family of solutions 

sin 13 =-l-v sn[ix~lix(x, y)], v = sinl3ra (4.3) 

Here 13m is the greatest angle (at the centre of the strip), the two signs correspond to a twist in different 
directions, and the symbol sn denotes the Jacobi elliptic sine [7]. It vanishes when its argument is equal 
to the quantity 

it/2 
2nK(v), K ( v ) -  I (1-v2sin~)-J62d~ , n=0,1 ,2  .... (4.4) 

0 

(K(v) is the complete elliptic integral of the first kind and v is its modulus). Solution (4.3) then satisfies 
the boundary conditions ~1 = 0 when IX1 = 0, when n = 0. On the other boundary (Ix = Ix2) condition 
(4.2) is satisfied if 

AIX/IX z = 2nK(v) n = ±1, +2 .... (4.5) 

Hence the constant v is determined, and, in terms of it, also the greatest angle 15m of twist in the 
centre of the layer. 

By definition [7] K(v) is a monotonically increasing function, i.e. 

K(v)> l t /2 ,  K(0)=~t/2, K(1)=oo,  0~<v~< 1 (4.6) 

Therefore, a non-trivial solution (15 = 0) exists if v = 0, i.e. K(v) > ~/2. From (4.5) and (4.6) we then 
obtain the inequality 

IAIXI>mtixx, n =  1,2  .... (4.7) 

Its right-hand side is the threshold value of the potential difference across the boundaries AIX. Below 
this threshold, we only have the trivial solution 13 = 0, i.e. the magnetic field does not distort the field 
of the director at all and I II It. When the threshold is reached (the bifurcation point) the undistorted 
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state becomes unstable and the set (2m) of solutions I] ~ 0 becomes possible. The number I n I 
corresponds to the number of half-waves of the sinusoid which are contained in the interval 112 - IX1 = 
AIX. The two equal and deepest minima of the functional of the elastic energy correspond to the first 
number n = _ 1, taking the magnetic terms and the two branches of the equilibrium deformations of 
the director field into account. The branches of higher order I n I ~> 2 correspond to metastable equilibria 
[8]. 

Condition (4.7) is essentially a universal criterion of the occurrence of threshold deformations of the 
two-dimensional field of the director in the regions of arbitrary geometry with boundaries which are 
either equipotential lines or magnetic lines of force of the non-uniform magnetic field. This criterion 
is a generalization of Frederick's criterion [6], which only holds for a plane-parallel layer with homo- 
geneous conditions along it: IX = Ix(y), rl =const. The universal nature of criterion (4.7) manifests itself 
in the fact that on]ly the potential difference and not the linear dimensions of the region occur in it. 

Expanding the relation Ix(x, y) in (4.3) as it applies to specific magnetic fields and changing to the 
angle tx(x, y) and Eqs (2.7) and (2.8), we obtain a solution of the problem of finding the fields l(x, y) 
and I-l(x,y) in final form for conditions (4.2) on the boundaries, excluding the deformation without the 
magnetic field. Solution (4.3) is also obviously universal with respect to the magnetic fields and the 
geometry of the region with boundaries Ix(x,y) =const  or rl(x,y) = const. 

We will now consider the case of boundary conditions which, when there is no magnetic field, cause 
distortions of the director field. In particular, they have the form 

13(t.tl) = O, [i(ixo) = ~/2 (4.8) 

It is important in principle that the values of the angles at different boundaries of the band should 
not be the same. "Ilareshold-free" solutions of Eq. (4.1), in which the distortions of the orientational 
field are already described for small magnetic fields, satisfy these boundary conditions. They have the 
form 

sin~=+sn[kt(x'Y)--'--ix°L Ix;c v _+K(v)], 0 ~  < v ~  < 1 (4.9) 

The different sil~ins again correspond to twists to the right or to the left. By definition sn(_K) = __. 1, 
and hence the second boundary condition in (4.6) is obviously satisfied. The zeroth condition in (4.8) 
is satisfied, in particular, when the argument of the elliptic sine in (4.9) takes the value (4.4). If n = 0, 
i.e. the argument vanishes, we have 

I AIXlix~I = vK(v), AIX = Ixi - IX0 (4.10) 

Taking this into account in (4.9) we obtain the solution in the final form 

sin~= +sn[ Ixl - Ix(x'y)AI.t K(v)] (4.11) 

Values In I = 1 and above are ignored. They give corrections to the angular field ~(IX) up to 180 °, 
which are eliminated in the asymptotic form as H ---> 0. We will show this. 

Relation (4.10) has no form of threshold criterion, since the right-hand side may vanish due to the 
factor v. 

If AIX = 0 (there is no magnetic field), it follows from (4.10) that v = 0, since K(0) = re/2. But 
then sn ~ sin. Identifying the arguments of the functions on the left and right in (4.11) we then 
obtain 

A/.t--~0, ~1--.~ I'tl -I.t(x, y) ~ (4.12) 
AIX 2 

This linear relationship between the twist angle and the potential for small values of the magnetic 
field can also be obtained directly from Eq. (4.1), neglecting the non-linear (magnetic) term in it. The 
asymptotic expression (4.12) satisfies the boundary conditions (4.8), but eliminates the contributions 
to 180 ° , which were correctly neglected above. 
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The universal formula (4.11), after substituting into it the solutions of the magnetic problems It(x, 
y), obtained for regions bounded by equipotentials gives, after using (2.7) and (2.8), a subclass of solutions 
of the plane problem of the theory of elasticity of nematic liquid crystals, which describe the effect on 
the initially non-uniform orientational field l(x, y) of a non-uniform magnetic field. 

Similar results are also obtained for regions bounded by the lines of force of the magnetic field 
l(x,y) = const. 

In problems of the first class, as in the general case, we can establish an inverse relationship, which 
expresses the magnetic field in terms of the angle I]. Obviously 

grad I~[kt(x, y)] = ~ grad It = [3~H (4.13) 

The derivative ~ is the first integral of Eq. (4.1), which has the form 

g x ~  = +~/sin2 ~m -- sin2 ~, I],~ = max 

Equation (4.13) then gives 

H(x,  y) = +l.tx(sin 2 ~m -- sin2 ~)-~ grad 

(4.14) 

(4.15) 

This relationship, which is simpler than (2.9), reflects the one-dimensional form of the function 13(it). 
The gradient of the angle [3 and the vector H are obviously coaxial. The formula holds for all regions 
whose boundaries are defined by the equation It(x,y) = const and for arbitrary piecewise-homogeneous 
boundary conditions. 

5. We will now consider the more complex boundary-value problems of the second class for closed 
regions, bounded simultaneously by equipotentials and lines of force. We will first consider doubly- 
periodic and then quasi-periodic solutions, which depend on both potentials Ix and 11. 

Doubly-periodic solutions are obtained by the method of separation of variables in Eq. (2.5) or (2.6). 
In this case we can consider rectangular regions in the plane of these variables, but boundaries in the 
actual space, part of which coincides with the equipotentials of the magnetic field, and part with the 
lines of force. In the actual space, regions with curvilinear boundaries also correspond to them. An 
example is a wedge-shaped cell containing a liquid crystal in which two surfaces (cylindrical) coincide 
with the lines of force of a circular magnetic field, while two others (radial) are its equipotentials. Similar 
cells with boundaries of arbitrary geometry can also be conformally mapped onto a rectangular region 
of the (it, 11) plane, to which the results of this section, given below, will also belong. 

The method of separation of variables was developed in [9], though, it is true, for the sine-Gordon 
equation of similar structures. It is easily modified for the equation considered here. 

We will write the solution of Eq. (2.5) initially, as in [9], in the form 

tg(a / 2) = all / a , ,  a ,  - a(it), all - a('q) (5.1) 

Using the representation sin 2a in terms of tg (~2)  and calculating V~(2a), we obtain the following 
equation instead of (2.5) 

2 2 (5.2) 2 ~(a.r~-I re" -l) + 2(a~)2 _ 2(a~)2 = a l  I -- a[ a ( a  2 + a l l  , ,  la--II -- - - l l a l l  

Differentiating this equation with respect to It and with respect to 11 separately, we obtain two equations 
with separated variables 

(4) 1 a u = 1 _ _ a  = 4a 2 

a~a~t allall ~ a n ) 

where a is an arbitrary constant. Integrating each of these equations twice, we obtain two first-order 
equations 

( a ; ) 2  = , ,  2 all4 + b2a,  + ¢2 

( a g ) 2  2 4 ' = a  ac t  + ( l - b 2 ) a 2  + c  2 (5.3) 
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The constants of inteRration agree with one another by substituting (5.3) into (5.2), and hence, of 
the six only three (a 2, b ( c  2) are independent. 

In Eq. (2.6) the variables are separated in exactly the same way with tx replaced by 13 in (5.1), but 
this leads simply to a change in sign in the second terms on the right-hand sides of (5.3). 

Integration of Eqs (5.3) with respect to ct or of the above equations with respect to 13 gives a solution 
in elliptic functions. 

We can put tg(o~r2) = o~oq~ in (5.1). We then obtain equations of the form (5.3), but with ot~ replaced 
by o~ 1 in the second of them. Each of the forms of the solution has its advantages with regard to some 
of the boundary conditions, which will be clear from what follows. 

The simplest solution in separated variables in the form of a product has the form 

t I~ + vv~nv~-nv~sn[2ix~ y) K(v . ' l s  p2Ti(x'y) K(v,~)] 
'J "L a. 

(5.4) 

The numbers v n and % satisfy the characteristic equations 

(I+V2)AIx2 K2(v~)+ K2(V,~)= 4Ix2 (5.5) 

V~t K2(v~t)- VT1 K2tv 

Solution (5.4) satisfies the zeroth boundary conditions with respect to 13 on the sides of the rectangle 
Ixl, IX2. 111, 112, i.e. the condition 1 / H is satisfied on the boundaries. When there is no magnetic field 
the orientations are also uniform over the whole region. 

Taking the properties of the function K(v), written in (4.6), into account in (5.5) we arrive at the 
conclusion that the orientational deformation has a threshold form. It occurs abruptly, when the potential 
differences AIX and AT I satisfy the condition 

AIx -2 CA1] -2 ~< (/I;IXX)-2, Arl= Ill 2 - r i l l ,  A l l :  11.1.2 - IXl  I (5.6) 

The equality sign corresponds to the critical values A~, Ar k. The bifurcation boundary is now obviously 
1 1 1 not a point but a circle of radius (n~) -  in the plane of the variables AIX-, Arl-. 

The threshold a'iterion for two-dimensional deformations has been obtained in this paper for the 
first time. The non-uniformity of the magnetic field and the dosed nature of the region S have been 
completely taken into account. 

The universal nature of the criterion should be noted. It relates to all the curvilinear regions, 
conformally mapped onto a rectangle in the (Ix, rl) plane. The boundaries of the regions are specified 
by the equations Ix(X,y) = const, 11(x,y) = const, where Ix(x,y) and Tl(x,y) are the conjugate potentials 
of the non-uniform magnetic field. By specifying the latter in detail in (5.4) one obtains the solution in 
the (x, y) plane in explicit form. 

Threshold-free. orientational deformations are also possible. These arise when a magnetic field is 
applied to a pretwisted orientational nematic liquid crystal structure in the rectangle considered. The 
solution can be written most simply in terms of the angle ~t in the form of the ratio of elliptic Jacobi 
cosines 

2 4 ~ car 2+<"' Y) K<,,,)], c{.2'a Y) Ko,,,)] 
2 L AIX 

(5.7) 

Obviously, on two boundaries of the rectangular region (B = ---B~) the angle t~ vanishes, while on 
the two others (rl =- ---~) it is equal to K. Consequently, there is a preliminary twist inside the region. 
The numbers v~t, vrt obey the following characteristic equations 
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(1 - 2 V 2 ) ~  K 2 (V~) -t (1 - 2v2)  K2 (v~t) = A I x  2 4g~'l  Arl 2 v  n K2 (v~)  = ~ _ T  K2 (vg)  (5.8) 

In view of  the  fact that  the quanti t ies K(vn) and K ( % )  are finite when  v 2 = v 2 = 1/2, it follows f rom 
the first re la t ion that  Arl = 0, AIX = 0, i.e. de fo rmat ions  also exist when  the re  are  zero potent ia l  
differences.  Consequent ly ,  there  a r e  no bifurcations,  bu t  a lower bounda ry  occurs  in the spec t rum of  
the number s  v n and v~t equal  to ~/(1/2). 

Note  that,  in the limit, solution (5.4) describes a two-dimensional  "kink",  concen t ra ted  in the region 
of  the boundar ies  of  the closed volume,  since sn ---> th as v ---> 1. Solution (5.7) then  reduces  to a Jacobi  
del ta-funct ion [7], concent ra ted  a round  the cent re  of  the region. The  cor responding  localized 
or ienta t ional  deformat ion ,  re la ted to the initial twist, can be regarded  as a specific defect  of  the 
orientat ional  field. Since (5.4) and (5.7) were  constructed f rom periodic functions, their  extension outside 
the  limits o f  the regions considered in the (~, Ix) p lane  gives a regular  " lat t ice" of  localized defects.  An  
or thogona l  curvil inear grid is ob ta ined  in the (x, y)  plane.  

6. More general quasi-periodic solutions have recently been constructed in a number of publications, for 
example, in [10, 11], where the so-called method of finite-zone integration was employed. The solution is 
expressed in terms of generalized theta functions of two or more complex arguments Zn(x, y) (n = 1, 2 . . . .  ). 
The latter are governed by two or more fundamental periods, and when they are non-commensurable, they turn 
out to be quasi-periodic [10]. Fairly general solutions of the sine-Helmholtz and sine-Gordon equations are 
constructed on a many-sheeted Riemann surface and its parameters occur in the solution. Hence, despite the 
successes of the theory (the conditions for the solutions to be real, continuous and singular are established in [liD, 
some solutions have so far proved diffict~lt to use for calculations. It is required, in particular, to calculate the 
Riemann matrix of the periods of a many-sheeted surface and to specify the latter in detail. Cases which arise when 
analysing two-zone (n = 2) solutions, when the theta functions depend on two periods, are relatively simple. As 
shown in [10, 11], in this case the Riemann surface can be arbitrary together with the matrix of the periods. The 
latter can be specified in general form as a symmetrical non-diagonalizable second-rank matrix with a positive real 
part. 

The simplest quasi-periodic solution, (vhich is expressed in terms of classical (single-zone) theta functions 01, 
02, 03, is obtained in the form [10] 

l i n  O3(ZI )O3(Z2) -O2(ZI )O2(Z2) ,  _ Zk 

7 
(6.1) 

The arguments z 1 = ilaul - ~111 and z 2 = i B u  2 - 111) 2 include two periods 111 and 112. If these numbers are 
commensurable, the solution becomes a periodic function. The theta functions 01, 02, 03 can then be expressed 
in a well-known way [7] in terms of the Jacobi cosine and delta-function. Changing from (6.1) to tg(oJ2), we obtain 
one of the formulae of Section 5. The quasi-periodic solutions of more-general form are yet to be used in boundary- 
value problems. 

This research  was c a r d e d  out  with financial suppor t  f rom the Russian Founda t ion  for  Basic Research  
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